
XcodeCapp 3.1	
What is XcodeCapp?
One of Cappuccino’s greatest features is its ability to use Xcode 4 to create the
user interface for your web applications. Xcode creates .xib files which then must
be converted by the command line utility nib2cib to .cib files for use with
Cappuccino. But beginning with Xcode 4, there is no way to directly create
outlets and actions without editing Objective-C header files.

XcodeCapp acts as a bridge between Xcode and Cappuccino. It performs several
main functions:

■ Creates an Xcode project where you can edit your Cappuccino project’s xibs.

■ Reads your source files and automatically creates outlets and actions in the
xib file.

■ Automatically converts xib files to cib files when the .xib file is modified.

■ Listens for changes to source files and xibs and updates outlets and actions
in the xib file accordingly.

What’s New?
If you are upgrading from XcodeCapp 2, a lot is new. We recommend you read
this document carefully to get the most out of XcodeCapp 3’s new features. Also,
we recommend that you search for all copies of XcodeCapp on your hard drives
and delete all but /Applications/XcodeCapp.

Using XcodeCapp

XcodeCapp is very easy to use and requires very little user interaction. There are
two ways to launch XcodeCapp: through the application or through the
command line.

When you build Cappuccino with jake, it will build the XcodeCapp application in
your /Applications folder. In addition, it will ask if you would like to install the

xcc command line tool in /usr/local/bin. The xcc command line tool allows you
to open a project directory in XcodeCapp directly from the command line. The
syntax is:

xcc [directory]!

If you omit the directory, XcodeCapp will just launch.

Once you launch XcodeCapp, either from the application or from the command
line, the XcodeCapp icon will appear in your menu bar. Clicking on the icon will
display the XcodeCapp menu:

When the status icon is light gray, XcodeCapp does not have a project open.

Creating a Project

To create a Cappuccino project, follow these steps:

1. Select “Create Project…” from the XcodeCapp menu. A folder create dialog
will appear.

1. Navigate to the path where you want to create your Cappuccino project.

2. Choose a name for your new Cappuccino project.

3. Click Create.

Once you create your project, XcodeCapp does the following:

1. Creates a Cappuccino project at the indicated path with the command
capp gen -t NibApplication -l (See “Preferences” below for
more information about the options).

2. Opens the project if the option is set in the preferences.

Opening a Project

If a Cappuccino is not already open in XcodeCapp, follow these steps:

1. Select “Open Project…” from the XcodeCapp menu. A folder chooser dialog
will appear.

2. Navigate to the root folder of your Cappuccino project — the one that
contains index-debug.html and Jakefile.

3. Click Open.

Once you open a project, XcodeCapp does the following:

1. Creates an Xcode project with the name of the project directory, if no such
project already exists.

2. Parses source code in the project directory and all non-Cappuccino
subdirectories (such as Build, Frameworks, etc.).

3. Parses source code in user (non-Cappuccino) frameworks.

4. If no cib file exists for a given xib file, converts the xib using nib2cib.

5. If the preference is set to auto-open Xcode projects, opens the Xcode
project.

When XcodeCapp is processing files, the status icon changes to light blue.

During source parsing, XcodeCapp creates an invisible folder called
“.XcodeSupport” in the root project directory. This folder contains files created by
XcodeCapp that act as the bridge between Cappuccino and Xcode, so you
should never directly modify those files. You will probably want to ignore this
folder in your IDE and source code management system as well.

After XcodeCapp has opened a project, it will listen for changes to the following
files anywhere in the project:

■ *.xib – Xcode 4 interface builder files

■ *.j - Objective-J source

■ .xcodecapp-ignore - Specifies files XcodeCapp should ignore. See
“Ignoring Files and Folders” below.

When XcodeCapp has a project open and is listening for changes, the status icon
changes to dark gray.

The most recently opened project is inserted at the top of the Open Recent
submenu in the XcodeCapp menu. By default, the recent project list is limited to
20 projects. You can change that number in the Preferences window. See
“Preferences” below for more information.

If you quit XcodeCapp while a project is open, by default when you reopen
XcodeCapp it will reopen the most recently opened project. You can change this
behavior in the Preferences window. See “Preferences” below for more
information.

Declaring Outlets and Actions

The most important function XcodeCapp performs is to create outlets and
actions for use with Xcode. You create outlets by prefixing them in your source
files with @outlet or IBOutlet. For example, in the class below, there are
four outlets defined:

Similarly, you declare actions by declaring the return type of the method to be
@action or IBAction. For example, the following method can serve as an
action for a control:

Notifications

XcodeCapp shows notifications whenever it loads a project or processes files. If
you are using Mac OS X 10.8+, notifications will appear in Notification Center.
Otherwise they will appear according to Growl’s preferences if Growl is installed,
or in a simple notification window if Growl is not installed.

When a project is loaded, XcodeCapp only shows notifications for the beginning
and end of the load. After a project is loaded, by default XcodeCapp shows a
notification for each modified source file that is processed. You can turn file

processing notifications off in the Preferences window. See “Preferences” below
for more information.

To completely turn off all notifications for XcodeCapp, use the Notifications
control panel (OS X 10.8+) or Growl preferences.

Note that notifications remain on screen for a minimum amount of time, and
thus may lag behind the actual processing of the files.

Handling Errors

If an error or warning occurs during the parsing of an Objective-J file or the
conversion of a xib, XcodeCapp notifies you in two ways:

■ If an error occurs, the status icon becomes red.

■ If an error or warning occurs, by default XcodeCapp will open the Reporting
panel and display informations about the error or warning.

Selecting an error in the list and clicking Open or double-clicking on an error
opens the offending file in the preferred editor for that file. In the case of .j files,
XcodeCapp will attempt to open the file directly to the offending line in the
following editors:

■ Sublime Text

■ TextMate

■ TextWrangler

■ BBEdit

■ Chocolat

■ MacVIM

The error list is cleared when a new project is opened. Also, whenever a file is
modified or deleted, any existing errors for that file are removed. So the Errors &
Warnings panel (should!) always represents the current state of your files.

Note: Errors are not tracked across file renames. Renaming a file will remove any
errors originating from that file.

See “Preferences” below for more informations and options about this feature.

Handling Code Style Issue

Once an Objective-J file is parsed well, XcodeCapp checks the syntax of your
code. If a code style issue is found, by default XcodeCapp will open the
Reporting panel and display informations about the code style issue.

!
!
!
!
!
!
!

As the errors or warning, XcodeCapp will attempt to open the file directly to the
offending line.

See “Preferences” below for more informations and options about this feature.

Editing Xibs

When you open a project, XcodeCapp creates an Xcode 4 project with which
you to edit your project’s xibs. If the preference to auto-open Xcode projects is
set, the Xcode project will be opened as soon as the Cappuccino project is
finished loading.

To manually open the Xcode project, click on the XcodeCapp menu and select
“Open Xcode Project”.

Once the Xcode project is open, you can edit your xibs with Xcode’s interface
builder. The Xcode project contains three folders by default:

■ “Resources” – Contains the files in your project’s Resources directory.

■ “Cocoa Classes” – Contains the Objective-C classes generated by
XcodeCapp. The filenames represent the project-relative path in which the
Cappuccino source was found. You may open the .h files and connect
outlets and actions to controls in the interface builder. Do not edit or
remove these files.

■ “Cappuccino Source” – Contains the source files found by XcodeCapp. You
may edit these files in Xcode if you wish.

All of the outlets and actions you declared in your source will be available in
interface builder for connection to views. For example, the InfoPanelController
shown above would have these outlets in interface builder:

To add more outlets or actions to the xib, you must edit the Cappuccino source
and wait briefly while XcodeCapp processes the changes; do not attempt to add
an outlet or action directly in Xcode.

Working with User Frameworks

When a project is opened, XcodeCapp looks for user (non-Cappuccino)
frameworks in your project’s Frameworks/Debug directory. Any debug user
frameworks in source form will be processed by XcodeCapp. This allows you to
declare outlets and actions in frameworks and use them within Xcode. In
addition, if a framework contains a Resources directory, a “<framework>
Resources” folder referencing that directory is created in the Xcode project. This
allows you to reference framework resources within Xcode.

If you want your user frameworks to execute in compiled form, but you still want
XcodeCapp to have access to the framework’s source in order to parse outlets
and actions, do the following:

1. Copy or symlink to the compiled framework as usual within your project’s
Frameworks directory.

2. Create a directory called “Source” within your project’s Frameworks
directory.

3. Within the Source directory, copy or symlink to the framework source
directory.

4. XcodeCapp will recursively search the Frameworks/Source directory when
a project is opened.

For example, here is the structure of a project’s Frameworks directory:

Note the following:

■ Debug/JQueryFileUpload is a symlink to the compiled framework. This is
what will be executed when the app is run in debug mode.

■ The Source directory contains a symlink to the JQueryFileUpload source.
This will be parsed by XcodeCapp.

If you need to use image resources located in a framework — for example in an
NSButton or NSImageView — you have two choices:

1. Use the base image name alone, for example “cancel”, which you wish to
represent the image “cancel.png” in the framework “JQueryFileUpload”.

2. Use a full name@framework specification, for example “cancel@
JQueryFileUpload” (without the quotes).

In the first form, during conversion, nib2cib will first search the app’s
Resources directory for an image with the given name, then it will search all of
the Resources directories of the debug frameworks, followed by the release

frameworks. The first match wins, and if the image was found in a framework,
the framework’s bundle identifier is recorded so the image can be loaded from
the correct bundle at runtime.

Since there might be multiple images in the search path that have the same
name, if you want to ensure you are using an image from a specific framework,
use the second form. During conversion, nib2cib will check the named
framework for the given image, and if it is found the framework’s bundle
identifier is recorded so the image can be loaded from the correct bundle at
runtime.

Ignoring Files and Folders

There may be source which you do not want XcodeCapp to process. To specify
directories or files which you want XcodeCapp to ignore, do the following:

1. Create a text file in the root of the project directory named “.xcodecapp-
ignore”.

2. Enter one line for each pattern you would like to ignore, where a pattern
matches the absolute (full) path to the file or directory.

3. Save the file. Whenever .xcodecapp-ignore is modified, XcodeCapp will
parse it to rebuild the ignore list.

Patterns may use “*” as a wildcard to match zero or more characters (it is not a
shell glob) and are matched against the absolute path of the file or directory, so
in most cases your patterns should begin with “*”. To ignore a directory, add “/” at
the end of the directory name. For example, “*/server/” will ignore that directory
and any files within it.

For example, to ignore the “Modules” directory and the xib file “foo.xib” in your
project, enter these lines in .xcodecapp-ignore:

*/Modules/!

*/foo.xib!

Sometimes you may want to ignore almost all of the files or directories within a
given directory. In such cases you can use an include pattern. An include pattern
has the same syntax as the normal exclude patterns, but begins with “!”. Since
ignore patterns are parsed in the order they appear in .xcodecapp-ignore, an

include pattern should come after the exclude pattern it overrides. For example,
if you wanted to exclude everything in the Modules directory, except for the
Classes directory and any xib files, you would use the following patterns:

*/Modules/!
!*/Modules/Classes/!
!*/Modules/*.xib!

Note that in addition to whatever patterns you specify (if any) in .xcodecapp-
ignore, XcodeCapp parses the following patterns before your patterns:

*/Frameworks/!
!*/Frameworks/Debug/!
*/AppKit/!
*/Foundation/!
*/Objective-J/!
/.environment/!
*/Build/!
/./!
/NS_.j!
*/main.j!
/.!
!*/.xcodecapp-ignore!

Updating Cappuccino

The menu item “Update Cappuccino” allows you to update Cappuccino on your
system to the latest version. When you select “Update Cappuccino” from the
XcodeCapp menu, XcodeCapp does the following :

1. Opens a progress dialog to follow the progress of the update.

2. Creates a temporary folder to save Cappuccino on your system.

3. Downloads the latest version of Cappuccino. This will either be the latest
stable release or the latest master branch version on github, depending on
the “Use latest master branch version” setting in the XcodeCapp
preferences.

4. Performs jake clobber!

5. Performs jake install!

Once the new version of Cappuccino is installed on your system, you should
restart XcodeCapp.

Note: If the update fails, check the system log in the Console application for
information on why it failed. The update will probably fail if in the past you did a
bootstrap or an install using sudo. In this case, you should completely remove
your installation of Cappuccino and then reinstall it from scratch without using
sudo.

Showing the Project

To quickly show the Cappuccino project folder, select “Show in Finder” from the
XcodeCapp menu. If you have CocoaTech’s Path Finder installed, the menu item
will be “Show in Path Finder” and the project folder will be opened there.

Preferences

XcodeCapp offers the following preferences:

Currently no warnings are generated by XcodeCapp. But in the future if there are
warnings which do not prevent the rest of the file from being parsed, you may
choose not to display the Errors panel when such warnings are generated.

Troubleshooting

XcodeCapp tries its best to keep your project source and the Xcode project
synchronized, and handles most file changes with no problem. However, it is
possible for the Xcode project get out of sync with your source files. In such
cases, you can synchronize the Xcode project with your source in two ways:

■ By selecting “Synchronize Project” from the XcodeCapp menu.

■ By entering “xcc --reset /path/to/project” in a terminal.

Both methods will remove and then regenerate the Xcode project
and .XcodeSupport folder. If the Xcode project is open in Xcode it will be closed
before being removed.

Logging

By default, XcodeCapp only logs internal errors and warnings to the system log
(accessible via the Console application). If XcodeCapp is acting strangely and
you are asked to check the debug logs, you can enable debug logging by
quitting XcodeCapp and then relaunching it while holding down the Option
key. This will generate copious debug information in the system log. XcodeCapp
will return to normal logging the next time it is launched without the Option key
pressed.

Credits

XcodeCapp was originally written by Francisco Tolmasky.

The Cocoa port was originally written by Antoine Mercadal for the Archipel
Project (archipelproject.org), and was then made part of Cappuccino.

XcodeCapp 3 is a substantial rewrite by Aparajita Fishman with additions by
Alexandre Wilhelm.

