
JSU.Timer
The complete Module API Reference

Quick Introduction
 1
Including the module in your page
 1

JSU.Timer API Reference
 2
Constructor
 2

Properties
 2

__task__
 2

__timer__
 2

__runonce__
 3

__interval__
 3

__running__
 3

Methods
 3

start
 3

stop
 3

restart
 4

pause
 4

setRunOnce
 4

setInterval / setTimeout
 5

setTask
 5

runsOnce
 6

isRunning
 6

Quick Introduction

 The JSU Timer Module (JSU.Timer / JSUTimer) gives you the possibility to create

timers that execute user actions when a specific time has passed. It mimics the functionality

from modern languages like Delphi, Java or C#, making your code more readable and less

difficult.

Including the module in your page

Before including this module in your page, first include the core module:

<script type="text/javascript" src="jsu.core.js"></script>

<script type="text/javascript" src="jsu.timer.js"></script>

JSU 1.0 Core API Reference

JSU.getPage(1)

JSU.Timer API Reference

A. Constructor

Syntax:

Arguments:
task: a function to be executed every time the interval period passes;

interval: the time in miliseconds to wait between the executions of task (how often the
task will be executed) in case of a persistent timer, and the time to wait before executing
the task in case of a run-once timer;

runOnce: a boolean indicating whether it’s a persistent timer or a run-once timer; a run-
once timer will stop itself after it executes the task.

Returns: A JSU.Timer object.

Example:

The code above creates a new JSU.Timer instance. This is a persistent timer, and gets a task

that shows the user a “hello” message every one second.

B. Properties

1. __task__

This is a private property, do not use it directly and use the getter/setter methods provided.

This property holds the function to be executed.

2. __timer__

This is a private property, do not use it directly and use the getter/setter methods provided.

This property holds an ID of JSU.Timer’s internal JavaScript timer.

JSU.Timer(task [, interval [, runOnce]]])

var t = new JSU.Timer(function() {
 alert("hello");
 }, 1000);

JSU 1.0 Core API Reference

JSU.getPage(2)

3. __runonce__

This is a private property, do not use it directly and use the getter/setter methods provided.

This property holds a boolean indicating whether the timer is persistent or not.

4. __interval__

This is a private property, do not use it directly and use the getter/setter methods provided.

This property holds a number representing either the interval at which the task will be

executed in case of a persistent timer, or the delay time before executing the task in case of a

run-once timer.

5. __running__

This is a private property, do not use it directly and use the getter/setter methods provided.

This property holds a boolean indicating whether the timer is running or not.

C. Methods

1. start

Starts the timer. If the timer is already running, nothing will happen.

Syntax:

Arguments:
delay: the delay time in miliseconds to wait before actually starting the timer; this
argument is optional and defaults to 0.

Returns: The current JSU.Timer object, allowing you to chain methods.

Example:

2. stop

Stops the timer.

Syntax:

start([delay])

t.start(); // starts the timer right away
t.start(5000); // starts the timer after 5 seconds

JSU 1.0 Core API Reference

JSU.getPage(3)

Returns: The current JSU.Timer object, allowing you to chain methods.
Example:

3. restart

Restarts the timer.

Syntax:

Returns: The current JSU.Timer object, allowing you to chain methods.
Example:

4. pause

Pauses the timer.

Syntax:

Arguments:
resumeAfter: the delay time in miliseconds to wait before resuming the timer; this
argument is optional and defaults to 0, meaning it won’t automatically resume the timer.

Returns: The current JSU.Timer object, allowing you to chain methods.

Example:

5. setRunOnce

Sets whether the timer is a persistent or a run-once timer. You can set this even if the timer

is running, because it will take effect only after a restart.

stop()

t.stop(); // stops the timer right away

restart()

t.restart(); // restarts the timer right away

pause([resumeAfter])

t.pause(); // pauses the timer until calling the start or restart method
t.pause(5000); // pauses the timer and automatically resumes it after 5 sec.

JSU 1.0 Core API Reference

JSU.getPage(4)

Syntax:

Arguments:
b: a boolean indicating the timer’s type (true meaning that it’s a run-once timer.

Returns: The current JSU.Timer object, allowing you to chain methods.

Example:

6. setInterval / setTimeout

Sets the interval at which the task is executed, or the time before the task is executed once.

The setInterval is used for persistent timers, while the setTimeout is used for run-once

timers. Notice that using setInterval on a run-once timer is equivalent to using setTimeout,

but beware that using setTimeout on a persistent timer will convert it into a run-once timer.

Syntax:

Arguments:
ms: the interval/timeout period in miliseconds.

Returns: The current JSU.Timer object, allowing you to chain methods.

Example:

7. setTask

Sets the timer’s task to execute. Notice that changing the task of a running timer will have

an immediate effect, making it use the new task instead of the old one, so be careful with

this method.

Syntax:

setRunOnce(b)

t.setRunOnce(false); // sets the timer as a persistent timer

setInterval(ms)
setTimeout(ms)

t.setInterval(1000); // executes the task every one second
t.setTimeout(5000); // executes the task only once after 5 sec.

setTask(task)

JSU 1.0 Core API Reference

JSU.getPage(5)

Task syntax:

Arguments:
task: the new task that will be assigned to the timer.

Returns: The current JSU.Timer object, allowing you to chain methods.

Example:

8. runsOnce

Checks whether the timer is a run-once or a persistent timer.

Syntax:

Returns: A boolean, true for run-once timers and false for persistent ones.

9. isRunning

Checks whether the timer is currently running or not.

Syntax:

Returns: A boolean.

function()

var tk1 = function() { alert("a"); },
 tk2 = function() { alert("b"); };

var t = new JSU.Timer(tk1, 1000);
t.start();
t.setTask(tk2); // changes the timer's task while running

runsOnce()

isRunning()

JSU 1.0 Core API Reference

JSU.getPage(6)

