
JSU.PassMeter
The complete Module API Reference

Quick Introduction
 1
Including the module in your page
 1

JSU.PassRule API Reference
 2
Constructor
 2

Properties
 2

__func__
 2

Methods
 3

getScore
 3

Defaults
 3

defaultRules
 3

JSU.PassMeter API Reference
 4
Constructor
 4

Properties
 4

__rules__
 4

__intpt__
 4

Methods
 4

changeRules
 4

changeInterpretation
 5

getStrength
 5

Defaults
 5

defaultInterpretation
 5

The JSU.PassMeter in action
 6

Creating a custom strength meter
 7

Quick Introduction

 The JSU PassMeter Module (JSU.PassMeter / JSUPassMeter) offers you an

extensible object-oriented password strength meter, allowing you to easily check the

strength of user passwords, or create your own measuring algorithm for your custom needs.

Including the module in your page

Before including this module in your page, first include the core module:

<script type="text/javascript" src="jsu.core.js"></script>

<script type="text/javascript" src="jsu.password.js"></script>

JSU 1.0 Core API Reference

JSU.getPage(1)

JSU.PassRule API Reference

A. Constructor

Syntax:

Arguments:
rule: a function that returns a score obtained by executing it on a custom password;
example of rules could be checking if the password contains only letters, or checking if
the password contains both letters and numbers which will produce a higher score than
the first example rule.

Returns: Must return a numeric value used to cumulate the scores of each rule applied.

Example:

The code above creates a new rule that checks the length of a string (the password) and

scores it accordingly. These values are the default used by the measuring algorithm, but you

can create your own rules with your own values.

B. Properties

__func__

This is a private property, do not use directly. It is used to hold the actual rule function of

the object.

JSU.PassRule(rule)

new JSU_PassRule(function(s) {
	 if (s == null || s.length == 0) return 0;
	 if (s.length < 5) return 3;
	 if (s.length >= 5 && s.length < 8) return 6;
	 if (s.length >= 8 && s.length < 16) return 12;
	 if (s.length >= 16) return 18;
})

JSU 1.0 Core API Reference

JSU.getPage(2)

C. Methods

1. getScore

Gets the score by executing a rule on a specified password. This method has no use outside

the module, being used only by the JSU.PassMeter object to cumulate scores and get the

strength of a password.

Syntax:

Arguments:
s: the string to check (the password).

Returns: A number reflecting the score obtained by applying the rule.

D. Defaults

defaultRules

This is the default set of rules used by the JSU.PassMeter object to get the strength of a

password.

getScore(s)

JSU 1.0 Core API Reference

JSU.getPage(3)

JSU.PassMeter API Reference

A. Constructor

Syntax:

Arguments:
rules: an array of JSU.PassRule objects.

Returns: Nothing.

B. Properties

1. __rules__

This is a private property, do not use it directly. If you want to change the measuring rules,

use the changeRules mehod instead. It holds the array of rules to execute on a password.

2. __intpt__

This is a private property, do not use it directly. If you want to change the interpretation

method, use the changeInterpretation method instead. It holds the actual function used to

interpret the score obtained by the given password.

C. Methods

1. changeRules

This method is used to change the default rules of measuring the strength.

Syntax:

JSU.PassMeter([rules [, interpretation]])

changeRules(newRules)

JSU 1.0 Core API Reference

JSU.getPage(4)

Arguments:
rules: an array of JSU.PassRule objects.

Returns: Nothing.

2. changeInterpretation

This method is used to change the default interpretation method for a given strength score.

Syntax:

Arguments:
intpt: a function used to interpret the score.

Returns: Usually a string containing the interpretation of the strength score, but can return

anything you need to correctly interpret the score.

3. getStrength

Gets the cumulative score obtained by applying all the rules to a password.

Syntax:

Arguments:
s: the password to measure.

Returns: A number

.

D. Defaults

defaultInterpretation

This is the default interpretation function used by the JSU.PassMeter object interpret the

results of a password strength check.

changeInterpretation(newIntpt)

getStrength(s)

JSU 1.0 Core API Reference

JSU.getPage(5)

The JSU.PassMeter in action

In this part of this book I’ll show you how to use the JSU.PassMeter to get the strength of a

password. Here’s the example code:

That’s pretty much it. But this example uses the default set of rules and the default

interpretation function. Next, I’ll show you how to create a new interpretation method based

on the same default rules, but using your own strings (good for localization purposes).

This is the code you need to write in order to have a custom interpreting method:

Now let’s explain the code. First, I’ve recreated the default interpretation method and

changed the resulting string values. Then, I’ve created a new JSU.PassMeter object using

the default rules and our previously defined interpretation method. The results are as

expected. Notice that the default set of rules can be accessed via JSU.PassRule.defaultRules,

while the default interpretation method is JSU.PassMeter.defaultInterpretation.

var p = new JSU.PassMeter();
alert(p.getStrength("a%_2")); // good
alert(p.getStrength("a")); // very weak
alert(p.getStrength("Aa_2^/a01b02")); // very strong

var i = function(score) {
 if (score <= 11) return "no way I'm gonna let you in!";
 if (score > 11 && score <= 21) return "keep trying!";
	 if (score > 21 && score <= 31) return "close, but not close enough!";
	 if (score > 31 && score <= 41) return "are you sure ?";
	 if (score > 41) return "you're in!";
};

var p = new JSU.PassMeter(JSU.PassRule.defaultRules, i);
alert(p.getStrength("a%_2")); // close, but not close enough!
alert(p.getStrength("a")); // no way I'm gonna let you in!
alert(p.getStrength("Aa_2^/a01b02")); // you're in!

JSU 1.0 Core API Reference

JSU.getPage(6)

Creating a custom strength meter

Let’s say we want to create a strength meter that checks if a password is good or bad,

nothing complicated. We could create a new rule for checking the password’s length, and

another rule for checking if the password has at least one underscore. The password will be

good if its length is greater than 5 and contains at least one underscore, otherwise it will be a

bad password. Let’s first look at the code:

First I’ve created the set of rules, an array of JSU.PassRule objects that define the actual

rules. The first rule checks if the password’s length is greater than 5 character long and, if

so, will return a score of 1 (meaning that it passed that rule), otherwise it will return 0 points

(it is good to always end the rule by returning a 0, in case no condition is met and to avoid

possible bugs or wrong condition spelling).

After the rules are set, I’ve created a new interpretation method which interprets the score

obtained by the password. If both rules apply, the score will be 2, while if only one applies,

the score will be 1. Obviously, if none applies, the score is 0. So, the interpretation method

will check if the score is 2, meaning that the password is “good”, otherwise it returns a

“bad” result.

var r = [
 new JSU.PassRule(function(s) {
 if (JSU.String.trim(s).length > 5) return 1;
 return 0;
 }),
 new JSU.PassRule(function(s) {
 if (s.indexOf("_") > -1) return 1;
 return 0;
 })
];
var i = function(score) {
 // if both rules are checked, the overall score is 2
 if (score == 2) return "good";
 return "bad"
}

var p = new JSU.PassMeter(r, i);
alert(p.getStrength("b_ad")); // bad
alert(p.getStrength("bad")); // bad
alert(p.getStrength("good_one")); // good

JSU 1.0 Core API Reference

JSU.getPage(7)

